Hierarchical A Posteriori Error Estimators for the Mimetic Discretization of Elliptic Problems

نویسندگان

  • Paola F. Antonietti
  • Lourenço Beirão da Veiga
  • Carlo Lovadina
  • Marco Verani
چکیده

We present an a posteriori error estimate of hierarchical type for the mimetic discretization of elliptic problems. Under a saturation assumption, the global reliability and efficiency of the proposed a posteriori estimator are proved. Several numerical experiments assess the actual performance of the local error indicators in driving adaptive mesh refinement algorithms based on different marking strategies. Finally, we analyze and test an inexpensive variant of the proposed error estimator which drastically reduces the overall computational cost of the adaptive procedures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residual and Hierarchical a Posteriori Error Estimates for Nonconforming Mixed Finite Element Methods

We analyze residual and hierarchical a posteriori error estimates for nonconforming finite element approximations of elliptic problems with variable coefficients. We consider a finite volume box scheme equivalent to a nonconforming mixed finite element method in a Petrov–Galerkin setting. We prove that all the estimators yield global upper and local lower bounds for the discretization error. Fi...

متن کامل

A Posteriori Error Estimation for a Preconditioned Algorithm to Solve Elliptic Eigenproblems

This paper presents an a posteriori error estimator for the preconditioned iteration scheme of Bramble, Knyazev and Pasciak to compute the smallest eigenvalues together with its invariant subspace of an elliptic diierential operator. The error estimator is applied both to the nite element space in which the preconditioned iteration is performed (iteration error estimation) as well as to its hie...

متن کامل

Efficient and reliable hierarchical error estimates for the discretization error of elliptic obstacle problems

We present and analyze novel hierarchical a posteriori error estimates for self-adjoint elliptic obstacle problems. Our approach differs from straightforward, but nonreliable estimators by an additional extra term accounting for the deviation of the discrete free boundary in the localization step. We prove efficiency and reliability on a saturation assumption and a regularity condition on the u...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Chapter 6 A posteriori error estimates for finite element approximations 6 . 1 Introduction

The a posteriori error estimation of finite element approximations of elliptic boundary value problems has reached some state of maturity, as it is documented by a variety of monographs on this subject (cf., e.g., [1, 2, 3, 4, 5]). There are different concepts such as • residual type a posteriori error estimators, • hierarchical type a posteriori error estimators, • error estimators based on lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2013